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Abstract— Method for numerical simulation of temperature 

of granules with internal heat release in a medium with random 

temperature fluctuations it is proposed. The method utilized 

solution of a system of ordinary stochastic differential equations 

describing temperature fluctuations of surrounding and 

granules.  Autocorrelation function of temperature fluctuations 

has a finite decay time. The suggested method is verified by the 

comparison with exact analytical results. Random temperature 

behavior of a granule with internal heat release qualitatively 

differs from the results obtained in the deterministic approach. 

Mean first passage time of granules temperature intersects 

critical temperature is estimated at different regime parameters. 

Keywords—stochastic ordinary differential equation; 

autocorrelation function; heat explosion; Semenov’s diagram; 

temperature fluctuations 

I. INTRODUCTION 

The catalytic synthesis processes generally accompanied by 

heat release. Synthesis of heavy hydrocarbons in the Fischer-

Tropsch process (GTL technology) is associated with essential 

heat generation [1]. GTL technology can solve a number of 

environmental and economic problems. 

In the Technological Institute for Superhard and Novel 

Carbon Materials (Troitsk, Russian Federation) is developed 

industrial reactor with capacity 5000 Nm
3
/h of synthesis gas 

with production 500 kg/h stabilized liquid hydrocarbons. The 

reactor used fixed bed of catalyst granules.  

Exothermic heat of reaction is transferred from the volume 

of catalytic granules to the boundary of the granules. At the 

boundary heat is removed to the liquid products of the 

synthesis. Exceeding heat generation over heat transfer leads 

to uncontrolled growth temperature - thermal explosion. Loss 

of thermal stability of catalyst granules can lead to thermal 

explosion of the reactor. Therefore, investigation critical 

conditions of thermal explosion are important practical 

problem.  

Conditions leading to thermal explosion in deterministic 

situation have been well studied [2-6]. There is a critical 

temperature, the excess of which causes a significant increase 

in temperature of granules. The situation is qualitatively 

different when the temperature of the environment is a random 

process. In this case there is always a non-zero probability 

exists a temperature fluctuation, the magnitude of which 

exceeds a critical value, which may lead to loss of thermal 

stability. Study of the effect of random noise on the behavior 

of systems with explosive behavior dedicated, for example, [7-

11]. The results of this study can also be applicable in 

modeling of ignition conditions of dispersed fuel in aircraft 

and rocket engines, power stations. Main trends obtained in 

the paper are helpful for estimation probability of thermal 

explosion in storages and transportation lines of dispersed 

combustible materials.  

Investigation effect of noise on behavior of systems with 

explosive behavior in papers [7-11] was carried out in the 

framework of probability density function approach [12]. This 

approach requires the use of modern methods of stochastic 

processes and functional analysis and yields results which 

have practical importance. However, the method of the 

probability density function does not take into account the 

some important details of the detailed chemical kinetics. In 

this situation, appropriate to use the methods of direct 

numerical modeling of temperature dynamics on the basis of 

solutions of stochastic ordinary differential equations [13-17]. 

 

In this paper we propose a method for direct numerical 

simulation of random temperature of granules with internal 

heat generation and with temperature fluctuations in the 

surronding. We construct temperature fluctuations with 

internal temporal structure. The autocorrelation function of 

themperature fluctuation of the fluid has finite decay time. 

This approach can be used in future for modeling stochastic 

behavior not only temperature, but reactant concentration 

inside the granules with detailed kinetics. Verification of the 

proposed algorithm is based on a comparison with analytical 

solutions. We Illustrate the various scenarios the loss of 
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thermal stability of catalytic granules. Calculations results of 

the average waiting time of thermal explosion are presented.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. EQUATION FOR TEMPERATURE OF A GRANULE WITH 

INTERNAL HEAT RELEASE. SEMENOV’S DIAGRAM 

A. Equation for temperature of the catalytic 

granule  

We investigate spherical granule with diameter pd , which 

is placed in liquid products with temperature fΘ . Thermal 

effect of exothermal reaction inside the granule is Q . Rate of 

chemical reactions is modeled as Arrhenius law with 

activation energy E . Heat transfer coefficient is α . Equation 
for the volume-averaged temperature of the granule pΘ has 

the following form 

 ( )d
e

d

p

E

Rp

p p p f p pm c S V QA
t

−
ΘΘ

= α Θ −Θ +
�

 .  

Here pm  is mass of the granule; 
2

p pS d= π  area of granule 

surface; 
3 6p pV d= π  is volume of the granule; A  is the 

frequency factor;R�  is universal gas constant.     
The equation for the granule temperature can be rewritten 

in the relaxation form  

 
d

e
d

p

E

Rp f p

p p

QA

t c

−
Θ

Θ

Θ Θ −Θ
= +

τ ρ

�

 , (1) 

where p p pd cΘτ = α  is temperature relaxation time of the 

granule.  
Temperature of liquid is given as 

 ( ) ( )f f ft tΘ = Θ + θ  , 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where fΘ  is averaged temperature of the fluid; ( )f tθ  is 

temperature fluctuations, ( ) 0f tθ = , angular brackets 

denote the results of averaging over an ensemble of random 

process of fluid temperature.  

Equation (1) in dimensionless variables has the form  

 
( )1d

e
d

p

E

f pp
Q

∗

−
Γ∗

Θ

+ γ − ΓΓ
= +

τ Ω
 , (2) 

Here p p fΓ = Θ Θ  is dimensionless temperature of the 

granule;  Et Tτ =  is dimensionless time; ET  is integral time 

scale of fluid temperature autocorrelation function; 

f f fγ = θ Θ  is a dimensionless temperature fluctuation 

of liquid phase; fE E R∗ = Θ�  is dimensionless energy 

activation; ( )p p fQ QA c∗ = ρ Θ  is dimensionless heat of 

exothermal reaction; ΘΩ  is parameter of thermal inertial of 

the granule.      

B. Semenov’s diagram 

Based on the analysis of Semenov’s critical diagram we 
show the existence of critical temperature. Infinitely small 
excess above the critical temperature leads to uncontrolled 
increase in temperature of the granule – thermal explosion.  

Analysis of Semenov’s diagram is provided for steady-state 
temperature of the carrier medium. Looking for a stationary 
temperature of the granule  

 
d

0
d

pΓ =
τ

 ,  
1

e p

E

p
Q

∗

−
Γ∗

Θ

Γ −
=

Ω
 . (3) 

We introduce dimension less power of heat transfer to the 

liquid phase ( )1pW ∗
Ω Θ= Γ − Ω   and dimensionless power 

of heat release ( )expQ pW Q E∗ ∗ ∗= − Γ .   

 
Fig.  1. Semenov’s diagram. 

 

 
Fig.  2. Behavior of temperature close to second root on Semenov’s 

diagram  
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Figure 1 represent Semenov’s diagram. It is evident that 

there is a region with three fixed temperatures of the granule. 
This region of three roots of equation (3) is bounded by the 
tangential lines, whose position is determined by the values of 
thermal relaxation parameter of the granule.  

At the tangential lines b and c in Fig. 1 the temperature of 
the granule returns to a steady state with low or high 
temperatures, respectively. To study the types of stationary 
temperature we performed numerical integration of the 
nonlinear equation (2) without taking into account fluctuations 
in the temperature of the medium. Figure 2 illustrates the 
dynamics of change of temperature granules, if the initial 
temperature is close to the second root on the Semenov. It can 

be seen that an infinitely small temperature above IIΓ  give a 

loss of thermal stability of the granule.  

If the initial temperature of the granule is infinitively less 

than the value IIΓ ,   the temperature of the granules proceeds 

to low temperatures close to ambient temperature. The second 
root at the Semenov’s diagram may be regarded as critical 

value cr IIΓ = Γ  .  

III. AUTOCORRELATION FUNCTION OF TEMPERATURE 

FLUCTUATIONS. EXACT RESULTS 

In this section, we obtain some exact results for comparison 
with data of numerical simulation. Exact solutions exist for 
linear equations. We consider the equation for the fluctuations 
of temperature granules (1) without a chemical heat source  

 
( ) ( ) ( )d

d

p f pt t t

t Θ

θ θ − θ
=

τ
 . (4) 

Temperature fluctuations of fluid ( )f tθ  is statistically 

stationary random process with correlation 

 ( ) ( ) ( )2

f f f ft t t t′ ′′ ′ ′′θ θ = θ Ψ −  . (5) 

We use the relationship between the autocorrelation 

function and its spectrum  

 ( )
( )

( )1

2

i t

f ft e d

∞
− ω

−∞

Ψ = ψ ω ω
π ∫  ,  (6) 

 ( ) ( )i s

f fe s ds

∞
ω

−∞

ψ ω = Ψ∫  . (7) 

 Solution of equation (4) has the form  

 ( ) ( )
0

1
t st

p ft e s dsΘ

−
−
τ

Θ

θ = θ
τ ∫   

 Autocorrelation function of temperature fluctuations of the 

granule is written as 

 ( ) ( ) ( )2

p p p pt t t t′ ′′ ′ ′′θ θ = θ Ψ −   

 ( ) ( )
0 0

1 1
t s t st t

f fds e ds e s sΘ Θ

′ ′ ′′ ′′− −′ ′′− −
τ τ

Θ Θ

′ ′′ ′ ′′= θ θ
τ τ∫ ∫   

 With the help of spectrum of the fluid temperature 

autocorrelation function (5) and (6) we write down expression 

for granule autocorrelation   

 ( ) ( )
( )

2

2

2
2 1

f fi t

p p t e d

∞
− ω

−∞ Θ

θ ψ ω
θ Ψ = ω

π + ωτ∫  . (8) 

Square of dispersion of the granule temperature 

fluctuations is follows from expression (8)  

 
( )

( )

2

2

2
2 1

f f

p d

∞

−∞ Θ

θ ψ ω
θ = ω

π + ωτ∫  . 

Let us consider two special cases of the autocorrelation 

function of the temperature fluctuations of the fluid.  

Random process ( )f tθ  – is delta-correlated in time 

random process. The autocorrelation function (5) has the form  

 ( ) ( )2f t t t t′ ′′ ′ ′′Ψ − = τ δ −
�

 , (9) 

Here τ
�
 is integral time scale 

 ( ) ( )
0 0

2f s ds s ds

∞ ∞

Ψ = τ δ = τ∫ ∫� �
 . 

Spectrum of autocorrelation function (9) is found from 

expression (7)  

 ( ) ( )2 2i s

f e s ds

∞
ω

−∞

ψ ω = τ δ = τ∫� �
 . 

 Substitution expression for the spectrum into formula (8) 

leads to autocorrelation function of the granule temperature 

fluctuations  

 ( )2 2

t

p p ft e Θ

−
τ

Θ

τ
θ Ψ = θ

τ
�  . 

 Intensity of temperature fluctuations and autocorrelation 

function of granule are 

 
2 2 2

p f f

p

τ
θ = θ θ

τ
�

≪  , ( )
t

p t e Θ

−
τΨ =  . 

 Delta-correlation approach is correct for granules with 

high thermal inertia. Autocorrelation function of the granule 

temperature fluctuations has exponential form with integral 

time scale equal the granule relaxation time.  

 Second approach is exponential approximation of ( )f tθ   

fluid temperature autocorrelation function  

 ( ) E

t

T

f t e
−

Ψ =  . (10) 
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Spectrum of the autocorrelation function follows from 

formula (7)  

 ( )
( )2
2

1

E

t
i t

T E
f

E

T
e dt

T

∞ ω −

−∞

ψ ω = =
+ ω∫  . 

 Correlation of the granule temperature fluctuation is 

obtained from formula (8)  

 

( )
( ) ( )

2

2

2 2

2

2 1 1

i t
f E

p p

E

T e
t d

T

∞ − ω

−∞ Θ

θ
θ Ψ = ω

π    + ωτ + ω   
∫  . 

 Calculation under theory of functions with complex 

variables leads to the result  

 ( ) ( )
( )

2 2

2
1

E

tt

T

E

p p f

E

e T e
t

T

Θ

−−
τ

Θ

Θ

− τ
θ Ψ = θ

− τ
 . (11) 

 Square of dispersion of the granule temperature 

fluctuations is follows from equation (11) at 0t =   

 
( )

2

2

1

f

p

ETΘ

θ
θ =

+ τ
 . (12) 

 Autocorrelation function of the granule temperature 

fluctuation also follows from equation (11)  

 ( ) ( )
( )1

E

tt

T

E

p

E

e T e
t

T

Θ

−−
τ

Θ

Θ

− τ
Ψ =

− τ
 . (13) 

Integral time scale of the granule temperature fluctuation is  

 ( )
0

p ET t dt T

∞

Θ Θ= Ψ = + τ∫  . 

It is seen that there are two types of granules. Granules 

with small thermal inertia with granules relaxation times much 

smaller than integral time scale of temperature autocorrelation 

function of fluid ETΘτ ≪ . In that case dispersion of 

temperature fluctuations of granules and fluid is close 
2 2

p fθ ≈ θ , and integral time scale of granules temperature 

fluctuations is ET TΘ ≈ . For granule with high thermal inertia 

ETΘτ ≫  dispersion of granules temperature fluctuations is 

less then fluid ( )2 2

p E fT Θθ ≈ τ θ . Integral time scale of 

granule temperature fluctuations is close to temperature 

relaxation time TΘ Θ≈ τ , and granules autocorrelation 

function decays as ( ) ( )expp t t ΘΨ ≈ − τ . 

Obtained exact results used for testing numerical algorithm 

of simulation temperature of granules in a random temperature 

of fluid.      

 

IV. SYSTEM OF STOCHASTIC DIFFERENTIAL EQUATIONS 

Analytical results show that modeling autocorrelation 
function with finite relaxation time is possible only on the base 
of stochastic ordinary equations.   

 Write down system of differential equations for 
temperature fluctuations of fluid and the granule with heat 
release 

 
( ) ( ) ( )

d

d

f

f

γ τ
= η τ − γ τ

τ
 ,   (14) 

 
( ) ( )( ) ( ) ( )1d

e
d

p

E

f p tp
t tt

Q

∗

−
Γ∗

Θ

+ γ − ΓΓ
= +

τ Ω
 . (15) 

Here ( )tη  – is seeded Gaussian random process with delta-

correlated function ( ) ( ) ( )22t t t t′ ′′ ′ ′′η η = τ η δ −
�

.  

Integration of the system of equations (14) and (15) is 

carried out by explicit Euler method   

 
( ) ( ) ( ) ( ){ }1 1n n n n

f f f

+ +γ = γ + ∆τ η − γ  ,  

 
( ) ( )

( )( ) ( )
( )

1

1
1

e
n
p

En n

f pn n

p p Q

∗+ −
Γ+ ∗

Θ

 + γ −Γ 
Γ = Γ + ∆τ + 

Ω  

 . 

Here n  – is the number of temporary steps; random increment 
of seeded process is modeled as  

 
( ) ( ) 22
n n∆τη = ξ η τ ∆τ

�
 ,  

where 
( )nξ – is random realization of the normalized Gaussian 

process (white noise) with zero mean and unit dispersion. 

 Figure 3 illustrates the effect of thermal inertia of the 
granules on the character of temperature fluctuations without 

 
Fig.  3. Example of random realizations of ambient temperature and 

the granules 
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heat source. It can be seen that increasing the thermal inertia 
reduces the amplitude of temperature fluctuations of the 
granule. 

  

 

 

 

 

 

 

 

 

 

 

 

 Figure 4 shows influence of thermal inertia of granules on 
dispersion of temperature fluctuations. The increasing thermal 
inertia decreases the intensity of temperature fluctuations of 
granules. From the Figure 4 is also evident a satisfactory 
agreement between the results of calculations by the exact 
formula (12) and numerical data obtained by averaging random 
realizations of temperature. 

 Autocorrelation function of the granule temperature 
fluctuations is shown in Figure 5. It can be seen that the results 
of numerical simulations satisfactory agree with exact results 
obtained by the formula (13). The growth of thermal inertia 
increases the damping region of the autocorrelation function of 
the granules. 
 
 

 

 

 

 

 

 

 

 

 
 

 

V. SIMULATION OF THERMAL EXPLOSION. AVERAGE 

WAITING TIME OF EXPLOSION 

This section presents results showing the various scenarios 

of behavior of granules temperature of with internal heat 

generation in the fluid with fluctuating temperature. Figure 6 

shows the behavior of the actual temperature of the granules 

with heat generation. On the figure ( )1f f tΓ = + γ  is actual 

temperature of surrounding fluid. It can be seen that 

fluctuations in a magnitude of chemical reactions make a 

significant contribution to the value of the random temperature 

of granules. The initial temperature of the granule is less than 

the critical value IIΓ  corresponding to the second root in the 

Semenov’s diagram. 

Random process with nonzero probability may exceed any 

level. After some random time the actual temperature of the 

granule will be over the critical value cr IIΓ = Γ  and there 

will be a loss of thermal stability. This scenario is illustrated 

by Figure 7. 

The waiting time of a thermal explosion we define as the 

average time of first crossing random temperature of granules 

critical level crΓ . Waiting time of thermal explosion crτ  is 

function of initial temperature of the granule pΓ
�

 (Fig. 8).  

As initial temperature approaches to the critical value, the 

average waiting time of thermal explosion dramatically 

reduced. The critical temperature crΓ  essentially depends on 

parameter of thermal inertia. 

 

 

 

 

 

 

VI. CONCLUSIONS  

Method of numerical simulation of random temperature of 

granules with internal heat source in surrounding liquid with 

 
Fig.  4. The ratio dispersions of temperature fluctuations of granules 

to fluid: points are simulation results; curve is the formula (12). 

 
Fig.  5. Autocorrelation functions of temperature fluctuations fluid 

and granules. Points are numerical simulations, lines are the 

formulas (10) and (13). 
Fig.  6. No explosion. 
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temperature fluctuations is designed. The intensity of heat 

release is described by the Arrhenius law.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For temperature fluctuations a numerical generation of 

random Gaussian process with an exponentially decaying 

autocorrelation function is suggested. Autocorrelation function 

and dispersions of temperature fluctuations without heat 

generation obtained by the numerical simulation are compared 

with the exact formulas, found by spectral analysis of 

stochastic processes. 

Analysis of influence of the fluid temperature fluctuations 

on the process of thermal explosion is carried out. Dynamics 

of thermal explosion for various values of granules 

temperature relaxation times, initial temperature of granules, 

and dispersion of temperature fluctuations are investigated.   

Based on direct numerical simulations the average waiting 

time of thermal explosion is investigated. Effect of stochastic 

drift of the granule temperature to its critical value is founded.  

Further research in the area of numerical simulation is 

possible to carry out in two directions. Firstly, use of the 

actual kinetic schemes the Fischer-Tropsch synthesis on cobalt 

catalysts. The second direction of research focuses on the 

accounting of the random medium temperature intermittency 

characterized by the log-normal distribution. 
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Fig.  7. Example of appearance of thermal explosion. 

 
Fig.  8. Average waiting time of a thermal explosion. 
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